
Draft Notice: TDECLayer is currently in production. This is an overview of the intended
workings of the system. Feedback and contributions are very welcome and we hope to engage

TDEC Layer

in a dialogue with the community throughout the design and build process.

Last Edited: 8 Oct 2024

How the Chain Works
Submitting Values
Cycle List
Disputing
Tipping
Validator Set Dynamics
Dual Delegation - Reporting vs Validating

Tokenomics
Bridging

Updating the Validator Set

TDECToken Bridge
Data Bridge

Signing Prices
Relayer
Relay fallback
Other cross-chain methods

Data Usage
Robust Data Usage
Edge Data Usage
Additional data security

Dispute Monitoring
Optimistic as Fallback
Additional Self-Driven Security and Fallbacks

Fork Choice
Soft Upgrades
Hard Forks

Plan for legacy TDEC contracts

Glossary

How the Chain Works
TDEC Layer is a stand alone L1 built using the cosmos sdk for the purpose of coming to
consensus on any subjective data. It works by using a network of staked parties who are

crypto-economically incentivized to honestly report requested data.

Submitting Values
Any staked reporter can submit a value for a given query (i.e. data request, e.g. BTC/USD
price). All queries have a report time frame. For that given time period, reporters can add their
value to the array of submissions. At the end of the time period, the official value is determined
by a weighted aggregation of all the values submitted.

All queries have an aggregation type associated with it (e.g. median, mode, average, etc.).
Once the time frame ends, the reports are subject to weighted aggregation. For this reason,
larger reporters contribute more to the official value than smaller ones. Each official value takes
a minimum of two blocks (target time 2s per block). The first block is the tip (e.g. “I request
BTC/USD”). The second block is the reporting and aggregation phase, where all values are
submitted and then aggregated, at which point an official value is determined for the query. Tips
are distributed to all reporters for a given query using their weighted contribution.

The reporting time frame begins once a queryId is tipped. All reporters can add their value to
the submission array for inclusion in the aggregation and for distribution of the rewards.1 Tips
received within the time frame are added to the initial tip. If no reports are submitted during the
time frame, the time frame is restarted upon the next tip and the original tip is added to the new
tip for that queryId.

Cycle List
In order to maintain freshness, the system will maintain a list of enshrined queries. Reporters
will continuously report for the next query in the list to ensure that tips do not need to be
submitted in previous blocks to have a base level of reporting (thus avoiding wasting gas by
validators who just want inflationary rewards). This will signal reporters what to report so they
act in unison and contribute as much aggregate power to a single report as is available.
Reporters are never required to report for any queries including those in this list, but as long as
inflationary rewards are enough to cover the gas costs of reporting, some query from the cycle
list should be reported to consensus every block. Cycle list changes are voted on by
governance.

1 The reason for this is that some queries are not automatic, e.g. “lets type in an answer manually”, so we
want to give room for non-time sensitive queries to get more reports. Spot prices and automated queries
will have a report time frame of 1 or 2 blocks.

Disputing
Disputes work differently than with previous versions of TDEC . Reporter stakes are not tied to
specific values, but rather just to a given reporter. For instance, a reporter can submit ETH/USD

once every second with their same stake. If they submitted a bad value 2 days ago, they can
still be subject to a slashing event. Similar to the old TDEC system, however, is the idea that
since you can censor a party by disputing, disputes are a bet or wager on who is correct (the
reporter or the accuser).

Any party can raise a dispute with free floating TRB, but unlike the old system, reporters and
validators can use their stake (or part of it) to begin a dispute. Once initiated, the dispute fee
and the potential slash amount (from the accused reporter) are put in escrow and removed from
corresponding staking powers.

To initiate a dispute, the disputing party will submit a dispute against a given validator for one of
three categories:

-

-

Warning (dispute fee is 1% of stake) - jail2 with no minimum time lock, can call a
function to be released from jail and begin reporting again
Minor Infraction (dispute fee is 5% of stake) - jailed for 10 minutes and out when
they call the release from jail function
Major Infraction (dispute fee is 100% of stake) - jail until dispute over (since
100% of stake)

-
.

A release function has to be called after a warning or minor infraction to ensure the staker has
looked at the dispute and implemented a fix as necessary. Infractions in these lower two tiers
can generally be assumed to not be malicious.

After specifying the dispute category, the disputer will submit an amount of TRB up to the
minimum slashing amount before the dispute can initiate. If they don’t have enough funds
themselves, for up to one day, others can add to the pot until they hit the slashing amount(1, 5,
or 100 percent depending on the slashing category). Once the amount is hit (could be hit
instantly upon proposing the dispute, or could take up to a day), the potential slashing amount
will be taken from the disputed validator and placed into a locked stake.

For up to two days, stakeholders will vote on which side of the dispute they support. TDEC
 Layer will use the same voting distribution as traditional TDEC governance:

25% users (tips)
25% reporters
25% token holders
25% team

2 “Jail” is a concept in the tendermint system where the validator (or reporter in this case) is locked out of
participating for a certain period of time

Once the two days are over there is a one day period where the dispute can be reopened and
the same two day voting round is repeated. However, if at any point a quorum of >50% total
voting power votes in favor of one side of the dispute, the dispute is considered finalized and no
new rounds can be opened.

Once the dispute is resolved, the stake from the losing party is transferred to the winning
party(ies) as undelegated, staked TRB. Tokens disputed or used as fees in disputes are not
released as free floating tokens so as disputes cannot be used as a way to exit staking faster,
however if free floating tokens are used to pay the fee, they are returned as free floating tokens
in the case of a successful dispute.

Note that each dispute round (even the initial one) takes 5% of the dispute fee. Of that 5%, half
is burned and the other half is divided amongst voters in the system. The dispute fee then
doubles each round up to the slash amount to further incentivize voting and to prevent
spamming. Once quorum is reached on a dispute, further dispute rounds cannot be raised.

For usage purposes, values are not attested to if the disputed reporter was the official
aggregated value (median contribution). Values that need to be flagged are also added to
evidence when the dispute is initiated (an array of values). For this reason, users who rely on
optimistic finality should be aware of dispute censoring attacks and the potential for values to
take time to get through.

Tipping
All tips will be in TRB. Each query can be tipped directly and its tip will increase as more users
tip it. Once a report is submitted and aggregated, 98% of the tip will be split amongst reporters
for that query in that given block. There will be a 2% fee on the tips (to prevent vote farming/
spamming). This 2% fee will be burned. Tips are distributed as locked TRB. Once locked,
parties can run a function to claim the tip, which acts as identical to “depositStake” in which the
tips are unlocked and added to their stake. This is to ensure that parties cannot bypass
validator deposit limits through tipping, as well as to prevent farming vote power via the tipping
mechanism.

Note that tipping in Layer will consist of only one time tips. The idea of built in heart beats or
price thresholds is nice, but the complexity added is unnecessary and better handled off-chain
(e.g. tip bots like the autoTipper we currently have handles this functionality already).

Validator Set Dynamics
Chains using the tendermint consensus mechanism have a limited number of validators. By
setting the number of validators, this allows for efficient interconnectedness between chains as

well as faster throughput. The tradeoff that any chain must consider is that more validators
leads to slower blocktimes. TDEC will start with a limit of 100 validators (more than current

reporting set), but will move to a larger set as technological advances or market conditions allow
(e.g. if no one needs sub-2 second blocks). The current target blocktime is 2 seconds.

The validator set can only change by a maximum of 5% per 12 hours including tip claims. This
is for purposes of maintaining a stable validator set for bridging efficiency. Once the 5% change
is hit, new validators will need to wait until rolling percent change per 12 hours is under the cap.
This 5% is a parameter that can be changed by governance.3

Dual Delegation - Reporting vs Validating
Tendermint uses a delegated proof-of-stake(dPoS) model where there is a set number of
validators, but all token holders can delegate to the top validators to share in rewards. TDEC
uses this delegation but adds a second delegation for reporting duties. Each token can be used

as a stake for reporting and for validating. Parties can delegate both the reporting and
validating to the same party, to different parties, or even to themselves. The same token is
subject to slashing by either method (reporting data or failing to honestly validate the chain) and

the stake balance for both delegations is reduced immediately upon either consequence.

The reason for this dual delegation is that validator sets are capped in tendermint based
systems, however we need to remove that cap to enable smaller and more reporters to help
decentralize the data provider set. Additionally, the cost of bridging is directly tied to the
validator set size (verifying signatures for the light client bridges), so a large validator set such
as Ethereum is unfeasible for our intended uses (the need for fast, cheap bridging of data).

Tokenomics
TRB will be the native currency of the chain and used for staking, tipping, and voting. All
tokenomics will remain the same. Four thousand tokens will continue to be the dev share to the
team each month and an equivalent amount of tokens will be distributed to reporters and
validators as inflationary rewards. Seventy-five percent of time based rewards will be given to
reporters with the other twenty-five percent given to validators.

Gas fees will be given to the block proposing validator (selected randomly by validator weight),
while tips and inflationary rewards to reporters are distributed proportionally to the reports
submissions based on weighted validator support. As an example, if a query is submitted for
and gets 50% of the stake contributing to the aggregated value, this report will get some
inflationary rewards, however if a more supported query gets submitted for with 100% of total
stakes reporting for it, this will get 2x the rewards as the first value. There is no benefit being
the only reporter for a query, unless of course there are tips that support that query over others.
Additionally, to prevent tips on queries that only a handful of reporters support, time based
rewards are only available on cycle list queries.

3 There is also a delay (21 days) to exit (the unbonding period).

The goal is to get broad support among as many queries as possible without either incentivizing
parties to report things that no one needs (e.g. report an obscure query that only I support) or
disincentivizing reports of new queries. Tips will still, and should, be used as the primary
incentive mechanism used to garner support for a given query.

Bridging

Updating the Validator Set
The bridge will be initialized with a starting validator set. Whenever the Layer validator set
changes by 5%, all validators sign this new validator set checkpoint. This 5% threshold helps
limit bridging costs as updating the validator set in the bridge contract costs gas. These
signatures are used to update the bridge’s record of the validator set, and any new data proofs
will not pass the bridge’s checks until the new validator set is relayed. Like data proofs, the
bridge will accept a validator set update if at least ⅔ of the last known validator set signed off on
it.

TDEC Token Bridge
The TDEC token will be interchangeable between the current ERC20 TRB contract on Ethereum

and the base token TRB on Layer. It will be secured by a two way bridge, operated by TDEC
layer itself via the trustless light client bridge. We will initially use a time-locked admin key to
handle forks, but it will quickly move to just using the base layer bridge.

Bridging TRB from Ethereum to Layer will take 13 hours. Once the deposit is made, TDEC
reporters will be able to report this information to Layer for an hour (to allow for a high level of
finality on Ethereum). Once that one hour window is closed, the deposit can be claimed 12
hours later on Layer. A party bridging TRB to Layer for the first time will not have TRB available
on Layer to pay the required gas fee to claim the deposit. However, they will be able to include a
‘claim deposit’ tip when they initiate a deposit on Ethereum to incentivize Layer participants to
call the claim deposit function for them.

In order to prevent attacks, withdrawals from Layer can only be done if unstaked from being a
validator on Layer (which requires 28 days). Once a withdrawal is initiated and attested to by
validators, it can be retrieved on Ethereum 12 hours later. As an additional security measure,
the bridge contract will not allow more than 20% of the total supply on Layer to be bridged within
a 12 hour period (the function will be locked).

We have prioritized security over speed on the token bridge.

Data Bridge
To use Layer data, a light client bridge will be present on each chain and parties will relay the
requested data and signatures as well as information related to validator set updates and chain
upgrades. Relaying is a trustless role, as anyone can push validator signatures from layer to
validate data on the bridge contract, however access controls can be put in place at the chain or
user contract level.

Signing Prices
Once a value is aggregated (finalized in a given block), all validators sign the information. The
resulting signatures will allow users to access the value, timestamp, aggregate power (amount
of reporter stake used in aggregation), previous report timestamp, and next report timestamp of
a given query. The previous report timestamp and next report timestamp by queryID are
included for proving various properties of a given report.

Where: data = value, timestamp, aggregatePower, previousReportTimestamp,
nextReportTimestamp

Validators will: sign(queryId, data, validatorCheckpoint, attestationTimestamp)

Parties using Layer can then grab the signatures and relay it to their chain.

Users can also request new signatures for data from previous blocks, (e.g. request(queryId,
timestamp)) and the chain will return signatures on the older data, but with a newer
attestationTimestamp. This is so parties can use values optimistically, by checking that the data
has stayed on Layer for a certain amount of time without disputes, as data that has been
disputed will not be signed again.

Relayer
The relayer (pushing signed data from layer to user chains) can be anyone, however we will
provide software for relaying values and tipper scripts for setting up recurring feeds. Many
keeper services also could fill this role (Keepr, Gelato, etc.).

Relay fallback
If there are no updates to a given light client bridge for >21 days (the unbonding period on
Layer), then the bridge is considered stale, a situation where it needs a manual update of a
validator set. In this case, we will set the team’s address as a fallback that can update this list.
If parties do not want it to fallback to the team, they can simply update the contract once every
21 days or deploy a light client bridge without this fallback (or where it falls back to a different
address).

Other cross-chain methods
We know that some parties already have existing bridge solutions that they prefer. Layer data
can be used via any of these solutions and we look forward to building and working with the
teams to deliver the fastest and most secure solution for users. Some potential usage solutions
include IBC, Hyperlane, Succinct, LayerZero, Chainlink, and many more.

In the future, it is likely that native or zero-knowledge bridges will be used to verify signatures,
consensus, as well as inclusion of values. TDEC will be leaning on other teams currently
specializing in cryptography research, but we fully expect that all bridges will be cheaper and
faster using this method and should be operational within the next cycle.

Data Usage
Reporters are not required to provide data for all queries. This creates two types of data
on-chain, robust data and edge data. Robust data is data that reaches consensus or support
from ⅔ of the reporters and validators, while edge data can be any data that did not. While
confidence on both types of data increases as time goes by (no disputes or forks in the case of
robust data), they have to be used differently.

Robust Data Usage
If ⅔ of TDEC reporters sign off on a value, it can be consumed faster. A relayer will grab the
desired data and signatures and push it to the consumer chain. Parties can then use the
information in their protocol. There is no need to validate it any further, however waiting could

be helpful, if only in extreme cases (e.g. large price moves), to check for forks, or widespread

dispute conditions (e.g. a protocol or exchange failure/hack where api information may not
properly reflect desired data specifications). In most cases however, this method will allow for

updates as fast as the chain itself.

Robust data can be consumed instantly only if it is assumed that the TDEC Layer validator set is

not compromised (signed off on bad data to the bridge or in the chain). However unlikely it is
that the validator set would be compromised we advise implementing some precautions when
using the data immediately. Users can run or whitelist relayers on their contracts and/or run
monitoring tools, not allow immediate withdrawals, system freezes, etc. as necessary. See the
Additional Self-Driven Security and Fallbacks section for more information.

Edge Data Usage
Similar to robust data usage, parties will request signatures and relay data from Layer. However,
edge data should be handled optimistically, meaning that the user should allow time for a
dispute to be raised and before using the data validate that the timestamp returned is within the

needed period of relevance (old enough to allow for disputes but fresh enough to use). They
can either use an older value (similar to current TDEC), and/or verify that X% of validators signed
 off on it.

Additional data security

Dispute Monitoring
Dispute monitoring is beneficial for both robust and edge data. However, this is especially
important when parties are using edge data; they must be cognizant that the system is only as
secure as the monitoring for disputes. If, for instance, a party requests an obscure piece of data
that only one validator reports for, and their stake is low, there will likely be few parties checking
this query for disputes. This is why if using an edge value, adding extra security is essential.
Running your own dispute monitor, educating more reporters to support it, or even more secure
measures such as using only if the median is within x% of a given (e.g. their own team’s)
reporter.

Optimistic as Fallback
If consensus fails on certain values that are typically robust, parties have two choices: wait for
consensus to return or handle the edge value, optimistically as specified above. This could be a

great option for some parties using data where quality can quickly change. A price feed for
example might not come to consensus in times of api failures or exchange manipulations (e.g.
feeds go down). In this case, it might be best to pause the system, but they could also go with
the optimistic approach if their protocol needs a faster (albeit still slower than consensus) price.
Note that in most cases, an uncertain value would NOT be pushed to your protocol. TDEC is
unique in that rather than forcing reporters/validators to sign off on an api or price feed, the
addition of their value is optional. This means that if a reporter is not certain it’s a valid value,
they will likely just sit out that round(not risk their stake or part of it) and the value will not reach
consensus; something that should be seen as a good thing in cases where ambiguity still exists
(e.g. two exchanges differ wildly on price).

Additional Self-Driven Security and Fallbacks
Although security is at the center of TDEC ’s design, consumers of TDEC data can add custom
additional security. One way is to simply limit who can push prices/ state updates on the
consumer chain. By adding validation at this level, chains could use either their own validators

or stakers to push over the prices after validating them. This would be an excellent option for
users with this level of ownership over their protocol.

An option for non-chains via the low latency model would be to add validation before a trusted
party (e.g. the app’s dao) pushes the data. It gives the trusted party an option to censor, but

they would be unable to change what the price is, something that would work similarly to a
multisig having pause authority/control over a protocol. Users can also do OEV limits this way
(relayer is a known party or even auction off the right for OEV4 each day/month).

Another option to increase security is consumer side pauses and delays. Pausing the system
could be similar to the Maker design, where token holders of their own system can freeze the
system in the case of a bad value.5 For delays, parties could just design a system where it
costs X dollars (a large amount) to delay the use of a reported value. While delayed, they could

initiate a dispute on the TDEC system to remove a reporter or evaluate the situation. This would

work well for systems that can handle delays (e.g. a prediction market delaying payouts). Just
note that this would be on a per-user basis and custom as the cost to dispute/pause is also the

cost to censor if it freezes the system for certain protocols.

Users can also add disputes directly in their protocol (similar to TDEC ’s disputing system, but

can be handled by their governance). This would work well if coupled with custom staking
requirements for reporters and could also be added as the “trusted” party that the TDEC value

must match.

Fork Choice
Upgrades and forks to Layer will likely happen. Upgrades in the form of better data aggregation

techniques, changes to the consensus protocol(e.g. cosmos sdk updates for faster blocktimes),
or even changes to the TDEC system to make it more secure. Hard forks on the other hand are

security based and happen if the protocol is attacked, compromised, or broken in some way.

Soft Upgrades
For upgrades, we can have the oracle itself report an upgrade. For each chain using the TDEC
protocol, we can have a mapping of chainID to a valid contract address for the verification of the

data/protocol. In order to change it, a new light client contract with the updated code will be
deployed on the EVM chain. Validators will then update the mapping, and propose a change on
the consumer chain. Then after waiting 14 days (allows for users to exit if malicious), the
address will be updated to the new validator contract.

Hard Forks
For hard forks, you will also have a way to update this proxy address for verification of the
consensus mechanism. The issue here is that time is of the essence. If the validator set is

4

5
Oracle extractable value
Depending on the type of data, this is a best practice for any system using an oracle

compromised or a bug is found, parties will want to very quickly switch off the oracle and
upgrade. Unfortunately the switch cannot happen quickly, but freezing should be possible.6

Plan for legacy TDEC contracts
TDEC currently has users on Ethereum, Polygon, Gnosis, Arbitrum, Mantle, zkEVM, zkSync,
BOB, and Optimism.

TDEC contracts are non-upgradeable, so users of the contracts can continue to use the
contracts as they do currently. Users will need to continue to incentivize TRB token holders to

stay on other chains posting data (tip), and should migrate over time as they upgrade their
contracts or launch new systems.

The current TRB token contract will remain the same. But instead of minting the time based
rewards to the oracle contract it will send these rewards to the bridge contract. The bridge
contract will also have an oracle proxy that allows users to read data from the Layer (the light
client contract) and gives the team the ability to vote through it.

The reason the oracle tokens are given to the bridge is to allow a two way bridge since
inflationary rewards would be happening on Layer based on the bridged tokens.

Glossary
1. TDEC Layer: A standalone Layer 1 (L1) blockchain built using the Cosmos SDK,

designed for consensus on subjective data using tendermint and an optimistic approach.
2. Cosmos SDK: A software development kit for building blockchains in the Cosmos

ecosystem.
3. Tendermint/ Comet BFT: A Byzantine Fault Tolerant (BFT) consensus algorithm used

by blockchains in the Cosmos network.
4. Validator: An entity in the TDEC Layer network that has locked a certain amount of TRB

tokens to participate in block validation.
5. Reporter: An entity in the TDEC Layer network responsible for submitting values for data

requests (queryIDs). Reporters can be staked validators or other participants, depending
on the network's rules. They provide data, incentivized through tips, subject to validation
and potential disputes.

6. Query: A unique identifier for a data request (e.g., BTC/USD price) on the TDEC Layer.
7. TRB Token: The native cryptocurrency of TDEC Layer, used for staking, tipping, and

governance.
8. Cycle List: A governance-controlled list of queryIDs to maintain data freshness and

ensure continuous reporting.

6 A library such as: https://github.com/RealityETH/subjectivocracy can be used as a dispute resolution mechanism
for freezing and then voting on the results of the fork (all very costly to initiate to prevent censoring). Ultimately, you
want this to be decided by the users on the chain itself and it might be a good choice to have a permissioned set (w/
a high cost still) or even a re-staking situation.

https://github.com/RealityETH/subjectivocracy

9. Consensus Threshold: The minimum amount of agreement required among validators
for a value to be considered valid.

10. Disputing: A process in TDEC Layer where reporters' submissions can be challenged,
potentially leading to slashing of their stake.

11. Slashing Event: A penalty where a portion of a validator or reporter's stake is removed
due to submission of incorrect data or other violations.

12. Tipping: A system where users can tip reporters in TRB tokens for submitting data for
specific queryIDs.

13. Relayer: An entity that transmits data from the TDEC Layer to other blockchains,
facilitating cross-chain data accessibility and usage

14. Robust Data Usage: A data verification method in TDEC Layer where values agreed
upon by a supermajority of reporters are instantly deemed reliable for real-time use.

15. Edge Data Usage: A method of using TDEC where submitted values are presumed
correct if not disputed over a period of time, and/or X% of validators signed off.

16. Light Client Bridge: A mechanism for relaying TDEC Layer data to other blockchains.
17. Validator Nonce: A unique number used once by validators to prevent replay attacks.

